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Interference dips in electronic absorption spectra caused by coupling between excited states are calculated
and interpreted using three methods: an analytical expression, an integratable expression, and wave packet
propagation. All of the analyses give similar results. The dips (distantly related to Fano’s antiresonance) are
caused by spin-orbit coupling between the states involved in spin-forbidden transitions with narrow bandwidths
and the state involved in a spin-allowed transition with a large bandwidth caused by progressions in normal
vibrational modes that are displaced between the excited and ground electronic states. The analytical expression
involves the assumptions that only one vibrational eigenstate of the “forbidden” electronic state is involved
and that the broad background is represented by a Lorentzian-type function. The integratable expression
replaces the Lorentzian function by one that represents the band shape caused by a progression of unresolved
vibronic peaks. The wave packet propagation method is exact for the model. Analytical expressions for multiple
interfering states and integratable expressions for multiple electronic states and multiple vibrational modes
are derived. The spectra of Ni(H2O)62+ and octahedral CrO69- units in ZrO2‚33%Y2O3 doped with chromium(III)
are analyzed. Physical meanings and mathematical origins of the interference dips are interpreted.

I. Introduction

Interference dips,1,2 sharp absorbance decreases in the elec-
tronic absorption spectra of metal-containing compounds and
crystals at the energies where absorbances with very narrow
bandwidths overlap a broad band, are frequently observed.1,3-21

These dips are very common in the spectra of octahedral
chromium(III) complexes where the narrow absorption bands
arise from intraconfigurational transitions and the broad band
from π* to σ* d-d transitions. The dips are found not only in
the spectra of chromium-containing molecules but also in the
spectra of crystals in which chromium is substituted for another
ion in the lattice.4-6,8,10,11,14,16,19-21 Spectra of other d3 metal
ions, especially those from vanadium(II),3,9 also exhibit dips;
the state energies in ions with this electron configuration are
frequently close to each other, and the bands overlap to produce
the effect. Dips are not limited to d3 metal ions; examples are
also found in the spectra of d8 nickel compounds,22 d2

chromium(IV) ions doped into a crystal lattice with tetrahedral
sites,13 and d4 manganese(III) ions doped into oxide lattices.17,18

Dips are also common in the spectra of lanthanide compounds
where sharp f-f transitions overlap broad d-f bands. Important
examples are found in the spectra of europium(II) compounds
and europium(II) doped in crystal lattices.7

Two examples of interference dips that are analyzed in this
paper are shown in Figure 1. The decrease of the absorbance
denoted by the arrows in the spectra is unexpected because the
spectra arising from transitions to two or more electronic states
are often the sum of the absorptions from transitions to each
state and should increase the total absorbance. Dips in the
intensities of broad absorption bands in atomic spectroscopy

were interpreted by Fano et al. and are known as “Fano
antiresonances”.23,24Until recently, the interference dips in the
spectra of molecules were interpreted by applying equations
developed for atomic spectroscopy23,24even though the breadth
of the absorption bands of the former are caused by unresolved
progressions in vibronic bands, whereas those in the latter are
due to the ionization continuum.

The first analyses of interference dips in molecular spectra
based on molecular properties were reported recently.1,21,25The
spectra were treated in terms of spin-orbit coupled ligand field
excited states. Potential surfaces for these states were constructed

Figure 1. Absorption spectra illustrating interference dips. Top:
Absorption spectrum of Ni(H2O)62+ at room temperature showing the
region of the3T1 band. The dip (indicated by the arrow) at 14 850
cm-1 is caused by interference with the1E state. Bottom: Absorption
spectrum of octahedral CrO69- units in ZrO2‚33%Y2O3 doped with
chromium(III) at 5 K in the region of the4T2 band. The two dips
(indicated by the arrows) are caused by interference with the2E state
at 14 344 cm-1 and the2T1 state at 15 430 cm-1.
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from known vibrational and electronic properties of the mol-
ecules, and the spectra were calculated by time-dependent theory
and wave packet propagation on the coupled surfaces.1,12,25-28

Examples of the potential surfaces used to analyze the spectra
in this paper are shown in Figure 2. These wave packet
propagation calculations, although exact in the framework of
the model, are not as simple or convenient to carry out as those
based on an analytic expression.

A simple analytical expression for the intensity decrease in
molecular absorption spectroscopy was recently derived.2 It uses
the assumption that not all vibrational states are populated.
Specifically, it assumes that the electronic state with its potential
surface minimum at the same position in normal coordinate
space as the ground state does not couple directly to the ground
state, but only indirectly through its coupling to the final state
of the spin-allowed d-d transition. In this “dark” state, the high-
energy vibrational states are not considered important, and only
the ground vibrational state is used. This simplification, which
was numerically verified, not only provides an equation that
can be used to calculate the spectrum on a graphing calculator
but also provides an analytical “line shape function”, i.e., the
difference spectrum between that of the coupled system and
the uncoupled spectrum with no interference dip. The latter was
cast into an ostensibly equal form to Fano’s line shape equation,
but the physical meaning of the parameters is different.2

In many experimental examples, more than two states are
coupled and more than one dip is observed in the spectrum.
This situation is often found in the spectra of chromium(III)
complexes and crystals. An example is shown in Figure 1. Exact
calculations based on wave packet propagation for three or more
electronic states are time-consuming and require significant
computer power and careful evaluation of the numerical results
to avoid artifacts from errors accumulating at each time step.
Simple methods and analytical expressions are needed.

In this paper, we report the results of analyses of interference
dips in the spectra of Ni(H2O)62+ and octahedral CrO69- units
in ZrO2‚33%Y2O3 doped with chromium(III)20 shown in Figure
1. The absorption spectrum of the former contains one pro-
nounced dip, whereas that of the latter contains two. The nickel

spectrum is fit and interpreted by using the analytical expression
and the exact wave packet propagation calculation. The former
reveals that the Lorentzian function used in the analytical
expression provides an accurate and quantitative analysis of the
molecular properties producing the dips but does not accurately
fit the wings of the spectrum. To better fit the entire spectrum,
an integratable expression is derived that is based on a band
shape dominated by vibronic progressions. The molecular
properties obtained from all three calculations are compared and
discussed. In the case of the chromium(III) spectrum, new
analytical and integratable equations are derived to treat correctly
the case of three or more interacting states. The molecular
properties obtained from these calculations are compared and
discussed, and the errors inherent in assuming that two or more
dips are independent of each other are highlighted. Finally, the
physical and mathematical meanings and origins of the interfer-
ence dips are interpreted. The dips are a form of destructive
quantum interference.

II. Theory

The theory is based on the coupling between a forbidden state
and an allowed state where the forbidden state’s potential surface
is undisplaced from that of the ground state and the allowed
state’s potential surface is highly displaced. In the case of spectra
of many metal-containing compounds, the forbidden surface is
the final state of an intraconfigurational “spin flip” transition
where the spin multiplicity changes but no change in orbital
occupancy is involved. The allowed surface frequently corre-
sponds to the t2g to eg π* to σ* antibonding transition. This
type of transition significantly weakens the metal-ligand
bonding resulting in a broad absorption band. A schematic of
the diabatic potential surfaces that illustrate the model and
illustrations of the most important parameters are shown in
Figure 2.

The total electron-nuclear Hamiltonian for the coupled
excited states is

where M is the oscillator’s mass,ω0 andωF are the frequencies
on the allowed and forbidden states, x is the vibrational
coordinate, xA is the shift of the minimum of the excited state’s
minimum upon excitation,εF and εA are the forbidden and
allowed states’ minimum potential energy, andγ is the spin-
orbit coupling between the two states (assumed to be coordinate
independent).

The absorption cross sectionσ(ω) as a function of frequency
is given by

whereΓ is a phenomenological damping factor that represents
the effects of coupling to other molecules or to the solvent,Ψ0

) [0,1]Tψ0 is the initial wave function that is localized on the
allowed electronic state A, andψ0 is the ground vibrational state
of the ground electronic state.

Figure 2. Potential surfaces for the ground and excited states producing
the interference dips. (a) Potential surfaces for Ni(H2O)62+. The arrow
illustrates the transition from the ground state to the displaced3T1 state.
A transition to the undisplaced1E state is spin forbidden. Quantities
used to calculate spectra with the numerical values in Table 1 are given.
(b) Potential surfaces for octahedral CrO6

9- units in ZrO2‚33%Y2O3

doped with chromium(III). The arrow illustrates the transition from
the ground state to the displaced4T2g state. Transitions to the
undisplaced2E and2T1 states are spin forbidden.
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A. Approximate Analytical Equation. An analytical expres-
sion for calculating interference dips has recently been derived.2

With the assumption that only a single vibrational state from
the forbidden electronic state is involved, the absorption cross
section is

whereâ is the cross section of the broad spin-allowed transition,
R is the cross section of the narrow spin-forbidden transition
andγ is the coupling (spin-orbit coupling) between the two.
The equations forR andâ are

where∆ is the maximum of the broad absorption transition to
the displaced excited-state potential surface andλ is the energy
difference between∆ and the lowest-energy levelεA of the
displaced excited state, as illustrated in Figure 2a.Γ is the
damping factor that determines the width of individual vibronic
lines. The difference spectrum is given by

This spectrum is the difference between the spectrum with and
without coupling and gives the “line shape function” that shows
how the spectrum arising from the transition to the allowed state
is changed by the interference from the forbidden state. It
consists of an interference dip bounded by two peaks. The
physical meaning of the interference is discussed in the final
section of this paper.

The analytical expression for calculating the spectrum when
two undisplaced forbidden states are present has not been
presented earlier. It is derived in Appendix A and is

whereγ1 andγ 2 are the coupling constants of forbidden state
R1 and forbidden stateR2 with the allowed state. Note that the
effect of two forbidden states cannot be calculated separately.
The application of this equation to the interference dips in the
spectrum of a d3 chromium(III) complex is discussed in Section
IV.

B. Integratable Equation. The simple analytical expressions
discussed above assume that the underlying background spec-
trum can be approximated by a Lorentzian function. For spectra
such as those shown in Figure 1, corresponding to the typical
resolution observed for transition metal compounds in solids
or solution, this assumption is good for the intense part of the
spectrum near the peak maximum, but it fails in the region of
the weak absorbance “wings” of the spectrum. For highly
resolved spectra, the approximation is inadequate.

The band shape of many transition metal compounds is caused
by unresolved progressions of vibronic bands and is accurately
represented by a smeared out Poisson distribution. An analytical
equation has not been derived using a Poisson function.
However, an integratable equation that represents exactly the
background spectrum caused by displaced harmonic potential

surfaces can be derived (see Appendix B.) The final equation
for â is

where σj is the width at half-height. This equation is more
accurate than the analytic equations above, but still suffers from
the problem that the tail of the spectrum falls off slowly because
of the Lorentzian line-shape. One approach to solve that problem
is to change the fall off from exponential (e-Γt) to Gaussian in
the integrand for eq 1.7. This would not be completely
consistent, because the derivation of eqs 1.3 and 1.6 relies on
the expansion of the Green’s function 1/(E - H + iΓ),
associated with an exponential falloff.

C. Exact Calculations. The Hamiltonian can be explicitly
evaluated and the spectra calculated by using time-dependent
techniques.1,26Because no approximation needs to be made, such
calculations are exact within the framework of the model. One
of the goals of this work is to compare the molecular parameters
that are obtained by fitting spectra having interference dips with
the simple analytical expression, the integratable equation, and
the exact calculation. The simple equation, implemented on a
graphing calculator, yields reasonable values of the molecular
properties.

III. Analysis of the Interference Dip in The Spectrum of
Ni(H2O)6

2+

The spectrum of Ni(H2O)62+ shown in Figure 1 contains a
striking example of an interference dip, the minimum observed
at 14 850 cm-1. Two peaks are observed on both sides of the
dip at 13 900 and 15 400 cm-1. The total width at half-height
of the double-peaked band is about 3100 cm-1.

The interpretation of this spectrum has had a long and
controversial history.22,29-33 Originally the two peaks in the
spectrum were interpreted as resulting from transitions to the
3T1(3F) and1E excited states. However, the intraconfigurational
transition to the1E state is expected to be much narrower than
either of the peaks in the spectrum. Recently, a low temperature
spectrum revealed highly resolved vibronic structure and was
analyzed in detail in terms of two coupled states.22 The focus
in this section will be on the destructive interference that leads
to the dip that separates the two peaks.

A. Analysis Using the Analytical Expression.The calculated
spectrum using eq 1.3, the analytical expression, is shown in
Figure 3a. The starting point for fitting the experimental
spectrum requires the quantification of the potential surfaces
in Figure 2a. The allowed surface determines the position and
the width of the underlying background spectrum given byâ.
The energy of the peak maximum is approximately at the center
of the spectrum, in this case at about 14 300 cm-1. The forbidden
surface determines the position of the dip; a simple starting point
is to position the energyεF at the minimum of the dip, in this
case at about 14 800 cm-1. The couplingγ is the spin-orbit
coupling. For the E (1E) and E (3T2g) states of Ni(II), the
coupling is 660 cm-1. The damping factorΓ is treated as a fitting
parameter; for transition metal complexes in solution, it typically
will have values between 100 and 1000 cm-1.
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The spectrum is calculated by using the initial trial values of
the parameters and comparing the resulting calculated spectrum
to the experimental spectrum. The parameters are varied until
a best fit is achieved. The best fit spectrum (solid line) is
compared to the experimental spectrum (dashed line) in Figure
3a. For the fit shown, the value of the vibrational frequency is
fixed at 380 cm-1 and the value of the spin-orbit coupling and
the damping are varied independently to achieve the best least-
squares fit. The parameter values for the best fits are shown in
Table 1.

The fit demonstrates quantitatively that the interference is a
result of spin-orbit coupling (with a value within the range
determined by independent experiments), state energies con-
sistent with known crystal field energies, and the known
vibrational frequency of the totally symmetric Ni-O normal
mode. The calculated damping factor of 630 cm-1 is well within
the range of damping factors for metal compounds in solution.
The fit demonstrates that the interference is interpretable in terms
of physically meaningful molecular parameters.

The width of the antiresonance dip is sensitive to the damping
factorΓ and increases asΓ increases. A change of(100 cm-1

causes a poorer fit. The depth of the dip is very sensitive to the
magnitude of the coupling constantγ and increases asγ
increases. A change of(10 cm-1 causes a poorer fit. When
the forbidden state is near the maximum of the allowed band,
a smallΓ with a large coupling constant leads to a sharp, deep

and well-defined antiresonance. If a largeΓ and a small coupling
constant are used, the antiresonance dip diminishes and the
resulting band shape becomes very similar to a featureless
Lorentzian.

The goodness of the fit is primarily determined by the
interplay between these two parameters. (The relative energies
of the two states are also important and determine the position
of the dip, but once these energies are determined the fitting
becomes dependent on the coupling and damping.) In the fit of
the nickel spectrum, one unique set of parameters produces the
best least-squares fit. Varying the spin-orbit coupling constant
by 5% and the damping factor by 20% significantly decreased
the agreement between fit and experiment.

The criterion for the best fit was weighted toward the upper
portion of the spectrum to emphasize the region around the
interference dip and its surrounding peaks. The analytical
equation uses a Lorentzian function for the spectrum of the
allowed state. This function does not properly model the
bandwidth of the absorption spectrum shown in Figure 1; the
“wings” of the function are broader at low and high frequencies
than the shape caused by the displaced harmonic oscillator.
Using this function does produce reliable values of the
parameters governing the interference as will be discussed
below. It is important to recognize that the experimental
spectrum contains contributions from other spin-orbit states
in addition to the states of E symmetry from both the3T1 and
1E states that produce the interference dip in the spectrum of
Ni(H2O)62+. The other spin-orbit states do not couple to the
forbidden state and thus do not contribute to the dip, but they
do contribute to the total absorption bandwidth. In the two-
state model discussed above, these contributions are not
explicitly included. Thus, the calculated displacement is an upper
limit; a slightly smaller value would result if small contributions
from the other uncoupled spin-orbit states were added to the
calculated spectrum. The neglect of these contributions is
estimated to cause a 0.03 Å error in the value of the displace-
ment XA. The value of XA from the analysis of the single-crystal
spectrum is 0.30 Å.22

B. Analysis Using the Integratable Equation.An analytical
equation has not been derived for the case of a band shape
caused by unresolved progressions of vibronic bands, but an
integratable equation that represents the background spectrum
caused by displaced harmonic potential surfaces is derived in
Appendix B and given in eq 1.7. For the octahedral complexes
discussed in this paper, only one normal coordinate is used to
calculate the band shape. However, eq 1.7 can be used for
multiple normal coordinates when spectra of lower symmetry
metal complexes are analyzed.

The best fit to the absorption spectrum of the nickel complex
is shown in Figure 3b, and the values of the parameters are
given in Table 1. The values are very similar to those obtained
by fitting the spectrum with the analytical equation. Detailed
comparisons are discussed in section D below.

C. Analysis Using Wave Packet Propagation.The spectrum
resulting from the two-state model can be calculated exactly
by using time-dependent wave packet propagation techniques.
The methods and insight obtained from these procedures were
discussed extensively.1,12,25,27,28The best fit obtained by using
the exact calculation is shown in Figure 3c and the values of
the parameters are given in Table 1.

D. Comparisons of the Calculations.The molecular proper-
ties that are deduced by fitting the experimental spectra using
the three different methods are very similar as shown in Table
1. The analytical expression, the simplest and fastest method

Figure 3. Calculated (solid lines) and experimental (dashed lines)
spectra of Ni(H2O)62+ using the parameters given in Table 1. (a)
Spectrum calculated using the analytical equation. (b) Spectrum
calculated using the integratable equation. (c) Spectrum calculated by
wave packet propagation on the surfaces shown in Figure 2.

TABLE 1: Parameters Used to Calculate the Spectrum of
Ni(H2O)6

2+ in Figure 3

parameter
analytical
equation

integratable
equation

wave packet
calculation

εA, cm-1 11375 10400
∆, cm-1 14325 14341 14333
εF, cm-1 14757 14780 14650
λ, cm-1 7620
XA, Å 0.283 0.313
Γ, cm-1 630 615 300
ωF, cm-1 380 380 380
ωA, cm-1 380 357 380
γ, cm-1 550 420 380
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to use, provides values that are the same within the experimental
uncertainty (with the exception of the coupling constant) as those
from the exact wave packet propagation fit. Most of the
properties are constrained by the experimental data and are not
freely variable fitting parameters.

The first step in fitting the experimental spectrum is to
position the potential surfaces such that the energies of the
allowed and forbidden states match those in the experimental
spectrum. The energy of the forbidden intraconfigurational state
is constrained by the position of the dip, and the energy of the
allowed state is constrained by the broad overall spectrum. These
values can be “tweaked” slightly (by less than 200 cm-1 out of
10 000 cm-1) during the fitting procedure, but the values are
highly constrained by the experimental data. In the three fits,
the values of the energy of the forbidden state that gave the
best fits to the position of the dip are within 130 cm-1 of each
other as shown in Table 1. The energies of the peak maxima of
the allowed state (defined by the position of the absorption band
maximum calculated with no coupling) are within only 16 cm-1

of each other.
Another step in the fitting process is to fit the overall width

of the spectrum. In the case of the analytical expression, the
width is defined by the value ofλ, whereas in the cases of the
integratable equation and the exact wave packet propagation
calculation, it is defined by both the vibrational frequency and
the displacement of the allowed potential surface. In all cases,
the final bandwidths are the same. In the latter two calculations,
the displacements are within 0.03 Å of each other. Note that
the width depends on the vibrational frequency; in the calcula-
tions with the analytical equation and in the exact wave packet
calculation, the vibrational frequencies for all states are fixed
at 380 cm-1 as measured for the totally symmetric Ni-H2O
stretching mode by vibrational spectroscopy. This assumption
is not necessary in the integratable and wave packet calculations,
but it does not significantly affect the values of the parameters.
We show this for the fit based on the integratable equation using
the experimental vibrational energy for the3T1 state determined
from low-temperature single-crystal spectra22 and the value
determined from Raman spectra for the ground and1E excited
states.

The final steps in fitting the spectra involve varying the
coupling and the damping to best fit the depth of the dip. The
value of the damping is strongly constrained by the resolution
in the spectrum. In the spectra of most transition metal
complexes, the overall absorption bandwidth is determined
primarily by the underlying vibronic structure (i.e., by the values
of the vibrational frequency and the displacement), so the value
of the damping is required to be large enough to wash out the
vibronic structure but not large enough to contribute significantly
to the overall bandwidth. In the calculations reported here, the
dampingΓ contributes only a few hundred wavenumbers to the
bandwidth. The damping is treated as a phenomenological factor
that represents dephasing and loss of the wave packet to other
vibrational modes and to the bath. The damping is not directly
comparable between the exact wave packet calculation and the
other two fitting methods, but the values determined by the fit
given in Table 1 show that their contributions to the spectra
are comparable.

The best fit values of the coupling are within twenty percent
of each other. The magnitude, about 450 cm-1, is within the
range of values that have been calculated for nickel(II)
complexes.

E. Difference Spectra and the “Line Shape Function”.A
difference spectrum, a plot of the difference between the actual

spectrum including the interference dip and the assumed or
calculated spectrum with no coupling and thus no dip, is often
called the “line shape function”. Difference spectra are a
convenient way of illustrating the changes caused by the
coupling. Difference spectra for Ni(H2O)62+ are shown in Figure
4 where a spectrum with nonzero coupling, a spectrum
calculated with zero coupling, and the difference between them
are plotted. The difference spectra always have the same
pattern: the difference intensity is negative at the position of
the dip and is positive at lower and higher energies. The
difference spectrum can be simply described as two peaks
surrounding a dip.2

It is tempting to try to fit a line shape function rather than
the actual spectrum. The problem that arises is that the line shape
function representing the “background” spectrum without
coupling must be known in order to subtract it from the actual
spectrum. A large number of assumptions must be made about
the underlying background spectrum (the quantityâ) including
assumptions about its intensity, its width and the energy of its
peak maximum. The difficulties are illustrated by the width of
the “background” spectrum in Figure 4a, which is 2700 cm-1,
significantly less than the width of 3100 cm-1 for the experi-
mental band. This significantly narrower width cannot be
accurately obtained from an intuitive choice of baseline or from
an empirical fit. Errors or biases in choosing the background
can lead to errors or misinterpretations of the shape function.

A common choice for the shape function is the “Fano line
shape function”, i.e., the difference spectrum derived by Fano
for dips in atomic spectra. The traditional “Fano” function has
either an “up-down” (constructive-destructive) or “down-up”
shape as scanned from low to high energy. Artificially moving
and scaling the background envelope can produce a “Fano” line

Figure 4. Difference spectra or “line-shape functions”. In each panel,
the top two spectra are calculated for Ni(H2O)62+ with and without
spin-orbit coupling. The difference between the spectra is shown at
the bottom of the panel. Note the “up-down-up” or “two peaks
separated by a dip” shape of the difference spectrum. (a) Difference
spectrum for the fit with the analytical equation. (b) Difference spectrum
resulting from the fit using the integratable equation. (c) Difference
spectrum obtained from the exact wave packet calculation.
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shape. The correct difference spectrum in molecular spectros-
copy must have an “up-down-up” shape as presented later.
Most published interpretations of interference dips in molecular
spectra assume Fano’s equations are applicable, that the down-
up shape function is appropriate, and artificially choose a
background that produces the desired shape. It is obvious that
parameters obtained with this approach carry little significance
because the equations are inappropriate and the choice of
background is arbitrary. The difficulties of obtaining physical
insight from this approach have been illustrated recently.34 The
best fitting procedure fits the entire experimental spectrum, not
a biased shape function.

IV. Analysis of the Interference Dips in the Spectrum of
Chromium(III)

The most common examples of interference dips in the
absorption spectra of large molecules are found in the spectra
of first row octahedral transition metal d3 complexes. The
energies of the2T1 and2E excited states are about the same as
that of the4T2 excited state. The former two states arise from
intraconfigurational transitions within the t2g orbitals, whereas
the latter involves the t2g to eg transition. The2T1 and2E states
cause multiple interference dips in the broad, spin-allowed band
in the spectra of a large number of chromium(III) complexes
and were first identified as interference effects (often labeled
as Fano antiresonances) in the spectra of vanadium(II) ions
doped into KMgF3.3

The analytical expression needed to calculate the spectra
containing two interference dips is derived in Appendix A. The
equation (eq 1.6) is similar to that used for one interfering state,
but the presence of the sum in the denominator shows that it is
not simply the sum of successive applications of the equation
for a single interfering state. Thus, spectra containing multiple
interference dips cannot be calculated correctly by using
sequentially the two-state equation that was appropriate for the
nickel complex. It is computationally very time-consuming to
carry out exact wave packet propagation calculations involving
three coupled surfaces and multiple vibrational dimensions.

A. Fit with the Analytical Formula for Three Coupled
States.The fitting procedure is similar to that used for two
coupled states. The appropriate potential surfaces are shown in
Figure 2b and are quantified in the same manner as those used
in the fit of the nickel complex’s spectrum. For chromium(III),
the energies of two forbidden and undisplaced surfaces are
needed to determine the positions of the two dips; a meaningful
starting point is to position the energiesεF at the minima of the
dips, in this case at about 14 300 and 15 200 cm-1. The fitting
is slightly more complicated because varying the parameters to
fit one of the dips influences those needed to fit the other. The
calculated and experimental spectra are compared in Figure 5a
and the best fit values are given in Table 2.

B. Analysis Using the Integratable Equations.An inte-
gratable equation (eq 1.7) that calculates the background band
shape caused by a progression of vibronic bands from a
displaced potential surface and the interference with two
undisplaced potential surfaces (Figure 2b) is derived in Ap-
pendix B. This equation more accurately calculates the absorb-
ance in the “wings” of the spectrum as is the case in the two-
state model. The fitting procedure using the equation parallels
that for the nickel complex. Again, the fitting is slightly more
complicated than it was for two states because varying the
parameters to fit one of the dips influences those needed to fit
the other. The calculated and experimental spectra are compared
in Figure 5b and the best fit values are given in Table 2.

C. Comparisons of the Calculations.The values of the
fitting parameters that are used to fit the spectrum using the
two different methods are very similar as shown in Table 2.
Most of the discussion about the fitting procedures and the
constraints on the parameters in the section on the nickel
complex also applies to the chromium complex. In the case of
the chromium complex, the values of the energies of the
forbidden states that gave the best fits to the positions of the
dips are within less than 50 cm-1 of each other. The energies
of the peak maxima of the allowed state are within less than 65
cm-1 of each other. The achievement of the best fit to the spectra
containing two dips required more effort than that for the spec-
trum containing one dip, probably because changing one of the
parameters for a given state affected more than one other state.

D. Comparison of Two Successive Two-State Fits with the
Three-State Fit.The presence of two or more interference dips
is common in the spectra of chromium(III) complexes. The usual
fitting procedure found in the literature treats the spectrum one
dip at a time. This type of successive fitting of each dip is not
correct as can be seen from the analytical expression given by
eq 1.6. This equation isnot the sum of two eqs 1.3 and thus the
three-state spectrum is not the sum of two two-state spectra.

Figure 5. Calculated (solid lines) and experimental (dashed lines)
spectra of octahedral CrO69- units in ZrO2‚33%Y2O3 doped with
chromium(III) using the parameters given in Table 2. (a) Spectrum
calculated using the analytical equation. (b) Spectrum calculated using
the integratable equation.

TABLE 2: Parameters Used to Calculate the Absorption
Spectrum of ZrO2‚33%Y2O3 Doped with 2% Cr3+ in Figure
5

parameter
analytical
equation

integratable
equation

εA, cm-1 13980
∆, cm-1 15166 15101
εF1, cm-1 14379 14330
εF2, cm-1 15406 15430
λ, cm-1 3620
XA, Å 0.184
Γ, cm-1 420 470
ωF, cm-1 (for states 1 and 2) 370 370
ωA, cm-1 370 345
γ1, cm-1 (state 1) 325 395
γ2, cm-1 (state 2) 241 245
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Problems that can arise when attempting to force a fit by
using two successive two-state fits are illustrated in Figure 6.
Figure 6a shows an enlargement of the spectrum in the region
of the dips. In all cases, the experimental spectrum is represented
by the dashed line. The lowest trace shows the best two-state
fit to the lowest energy dip and the middle trace the best two-
state fit to the highest energy dip. The upper trace shows the
sum of the two one-state fits. Note that the dips are filled in
and the match to the experimental spectrum is poor. If an attempt
were made to force the summed spectrum to fit the experimental
spectrum, much larger values of the coupling constants would
have to be used to counterbalance the filling in.

The parameters that produce a good fit to the experimental
spectrum when the correct three-state model is used do not
reproduce the spectrum when they are used in two two-state
calculations. The parameters listed in Table 2 that produce the
excellent fit shown in Figure 5 are tested in the two-state model
by using them separately to produce the calculated spec-
trum shown by the solid line in Figure 6b. In this calcula-
tion, the parameters from Table 2 are used for two calcu-
lations with eq 1.3. For the first calculation, the parametersγ2

and εF2 are omitted, leading to a spectrum with only one
interference dip caused by state 1. For the second calculation,
the parametersγ1 andεF1 are omitted and the interference dip
is caused by state 2. The two spectra are summed and
normalized to the maximum absorbance. Again the dips are
washed out, and in addition the bandwidth is poorly reproduced.
For spectra containing two interference dips, eqs 1.6 or 1.7 must
be used.

V. Physical and Mathematical Meanings

The physical meaning and mathematical origins of the
interference dips and peaks can be found in three ways. First,
the dip can be visualized in terms of interference between wave
packets launched on two paths. Second, it can be interpreted in
terms of the functional forms of the components of the cross
sections. Finally, the two peaks separated by the dip can be
explained in terms of a recurrence in the time domain caused
by back amplitude transfer from the forbidden surface.

A. Interference between Two Wave Packets.In the simplest
terms, the absorption transition to the coupled excited states is
reminiscent of the classic double-slit diffraction experiment,
where intensity modulations caused by the interference between
waves taking paths through different slits are observed. When
a wave packet is launched on the allowed state’s surface, it can
propagate on that surface and transfer amplitude and propagate
on the forbidden surface. The interactions between the wave
packets on the two surfaces lead to interferences. If the wave
packet only propagates on the allowed state (and there was no
coupling to the forbidden state), the absorption spectrum would
be smooth and featureless. The coupling to the forbidden state
gives the electron two primary options on the surfaces in Figure
2: it can stay on the allowed state (route 1), or it can hop from
the allowed state to the forbidden state, stay there, and then
hop back (route 2). The interference between these two paths
(as well as the further paths associated with jumping twice back
and forth, etc.) leads to the interference features (dips and peaks
in Figures 1, 3, and 4). The interference sign is determined by
frequency: at some frequency it is positive, and at others
negative.

To elaborate on the mathematical framework, eq 1.3 is
expanded as

The terms in this expansion offer a physical interpretation. First,
the wave function can fall off directly without even interacting
with the forbidden state. There is an amplitude for doing that.
Second, it can fall off while interacting with the forbidden state.
Specifically, this wave packet falls off on the allowed state,
then “jumps” into the forbidden state (through the couplingγ).
The wave packet then propagates on the forbidden state (with
an amplitudeR) and then finally jumps back to the allowed
state, yielding anotherγ factor. The process continues to higher
orders, but this is sufficient for our purposes. The key is that
the wave packet launched on the allowed state undergoes
interference between the term propagated purely on the allowed
state and the term that is also propagated on the forbidden state.
The two terms areb + âγRγâ, so that there will be destructive
interference if ReâR is negative.

A less formal approach is to look directly atC(t) and interpret
the constructive and destructive interference based on that.C(t)
can be written

As before, this (the second term) is interpreted as follows: the
first part (exp(-iH0t′′′′)) of the second term is associated with
propagation ofΨ0 on H0, i.e., the allowed state. Then thet′′′

Figure 6. Calculated spectra using two sequential applications of the
equations for one dip. (a) The three pairs of traces show the best fit to
the lowest energy interference dip (bottom), the highest energy
interference dip (middle), and the sum of the two traces normalized to
the same area as the experimental spectrum (top). In all cases, the
experimental spectrum is shown by the dashed lines. Note that the sum
is not a good fit and that the depths of the dips are poorly reproduced.
(b) The solid line is the spectrum calculated by using the equation for
one dip successively with the same parameters as those used for the
best fit and the equation for two interferences. First the parameters for
the low energy dip were used, then the parameters for the high energy
dip were used, and finally the two spectra were summed. Again, the
sum is not a good fit and the depths are poorly reproduced.

-πσ(ω) ) Im( â
1 - γ2âR) ≈

Im(â + âγRγâ + âγRγRγâ + ...) (1.8)

C(t) ) C0(t) + ∫0

∞∫0

t′∫0

t′′∫0

t′′′
〈ψ0|exp(-iH0(t - t′ - t′′ -

t′′′ - t′′′′) exp(-iHct′) exp(-iHct′′) exp(-iHct′′′)

exp(-iHct′′′′)|ψ0〉 dt′ dt′′ dt′′′ dt′′′′ + O(γ6) (1.9)
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term brings it to the forbidden state, thet′′ term propagates it
there, and thet′ term brings it back to the allowed state, where,
depending on the phase it accumulated, it can interfere positively
or negatively with the initial (purely allowed state) term, to bring
a peak (at some time) or a valley at another time.

B. Components of the Cross Sections.The mathematical
reason for the interference dip separated by two peaks is most
simply illustrated by examining the analytical formula for the
difference spectra (eq 1.3, plotted in Figure 7). When the
coupling is small, the difference spectrum becomes

The real and imaginary parts ofR andâ are plotted in Figure
7a. The dip and peaks originate from the product of ReR Reâ
because each component changes sign at a different wave-
number. On each side of the minimum, both ReR and Reâ have
the same sign, the product is positive and the constructive
interference yields the peaks, as illustrated in Figure 7b.

It is interesting to note that the dip cannot reach zero
absorbance unlessΓ ) 0. This result can be visualized by
following the trend as ReR becomes narrower, the destructive
interference occurs over a narrower wavenumber region, and
the dip narrows and becomes deeper.

C. Back Amplitude Transfer. The time-domain explanation
of the interference dip is based on the short-time autocorrelation
function.1 When the two surfaces are coupled, the total
autocorrelation function decreases more rapidly than it does
without coupling (leading to a broader absorption spectrum).
Most importantly, it increases to reach a local maximum that is
absent in the uncoupled case. The maximum is caused by back
population transfer from the forbidden to the allowed diabatic
surface. At short times, the wave packet develops appreciable
probability on the forbidden diabatic state. The decrease in
probability on the allowed surface when the wave packet
develops probability on the forbidden surface is responsible in
part for the rapid decrease in the magnitude of the autocorre-
lation function and the broader absorption band. The dip and
peaks in the spectrum are related to the changes in the
populations of the two surfaces. The population of the allowed
state decreases rapidly, reaches a local minimum, and then

increases to reach a local maximum at short times (less than
∼30 fs). The initial decrease corresponds to loss of population
from the allowed state followed by back transfer from the
forbidden state. The autocorrelation function roughly follows
the population and also shows a rapid decrease followed by an
increase. When transformed to the frequency domain, the rapid
decrease results in a broad spectrum, and the small recurrence
corresponds to a separation between bands in the frequency
domain.26 The net result of these effects is to produce two new
peaks separated by a dip in the coupled spectrum.

Acknowledgment. This work was made possible by grants
from the National Science Foundation (CHE 0206857 to J.I.Z.
and CHE 0102623 to J.I.Z. and D.N.) and from the Natural
Sciences and Engineering Research Council (to C.R.). We thank
Professors F. Wasgestian and W. Assmus for their gift of the
doped chromium(III) crystal used in this study.

Appendix A

In this appendix, the cross section for a molecule containing
two undisplaced forbidden states coupled to a displaced allowed
state is derived. (The derivation is general, and is also appropri-
ate for the case that there are more than two forbidden states.)

The Hamiltonian is

where

whereH0A is the full many-state Hamiltonian of the allowed
state,H0D refers to a forbidden electronic state (one in the
original derivation, two states now), andHC is the coupling
Hamiltonian.

In addition, it is assumed that the coupling Hamiltonian does
not couple directly the two forbidden states D1 and D2 but
instead is associated with a coupling of D1 to the A state and
with D2 to the A state. This basically means that the two
forbidden states, D1 and D2, are not directly coupled. It is further
assumed that the coupling of D1 to A is a constant,γ1, and that
there is an analogous term for D2-A coupling

The equations are derived with as little information as possible
on the actual molecular Hamiltonian. It is necessary to find

whereE is complex

A Born expansion is now used to get

Now the assumption is made that D includes only two states
(D1 and D2, each with a single vibrational state). Therefore, the
Hamiltonian matrix can be written as a 2+ N matrix, whereN
is the number of vibrational states used for expanding the
acceptor state. The full matrix is then

Figure 7. (a) Plots of the real and imaginary parts ofR andâ from
the analytical equation (eq 1.3). The interference dip and the double
peak result from the product of the real parts of the Lorentzians that
change sign in different parts of the spectrum. (b) The product of
Re(R)Re(â) is shown in the bottom panel.

σdiff(ω) ≈ γ2

π
Im(2 ReR Reâ Im â + Im R Reâ2) (1.10)

H ) H0 + HC (A.1)

H0 ) H0A + H0D (A.2)

〈Ψ0|G(E)|Ψ0〉 ) 〈Ψ0| 1
E - H|Ψ0〉 (A.3)

E ) ω + iΓ

1
E - H

) 1
E - H0

+ 1
E - H0

HC
1

E - H0
HC

1
E - H0

+ ... (A.4)
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whereHD is now a 2× 2 diagonal matrix and∆ is anN × 2
matrix

and I ) 1,2 is an index over the forbidden state, whereasj is
an index over the allowed state’s vibrational levels. For the
upcoming final part of the derivation, it is important that both
forbidden states are undisplaced, i.e.,φD ) φD1 ) φD2, so that
∆ has a very simple form: two identical columns up to a
constant. This aspect is discussed later.

HA is anN × N diagonal vibrational Hamiltonian. In addition,
the initial state has the form

whereψ0 is the initial state which in coordinate states is simply
equal to the ground-state of the vibrational Hamiltonian of the
forbidden states. So it follows that

Thus, up to a constant, the coupling∆ is equal to the initial
wave function

i.e., in matrix form

(i.e., anN × 2 matrix made as (N × 1) × (1 × 2) matrixes).
The final step is to rewrite eq A.5 as

Accumulating all of these equations, the ingredients to the
Green’s function are obtained from eq A.4:

Note that in each of these terms one of theU can be removed.
More explicitly, the initial functionΨ0 is in the space of the
allowed state (its first two rows, associated with the forbidden
states, are empty).G0 does not change these, whereas in the
coupling term,U + UT , only the term (UT) which couples from
the allowed state to the forbidden state survives. This implies
that all the terms odd in the perturbation vanish, and those that
remain have the form

Next the specific form (A.10) is used to give

or finally

whereâ has the same meaning as in eq 1.3 (Ψ0
TG0Ψ0), whereas

“c”, which in the original derivation was simplyγ2R, is here

Thus, in conclusion, eq 1.3 is replaced by

or

Appendix B

In this appendix, the expression forâ for a harmonic excited-
state potential surface displaced along several normal coordi-
nates is derived. The derivation starts from the well-known
expression

where the wave packet starts atψ0 and is propagated under the
zero-order Hamiltonian. The next stage is to notice that on the
excited state the motion is uncoupled between the different
phonons, so that the overlap function becomes

whereηj denotes the individual phonon terms. Becauseηj0 is a
Gaussian, the overlap is35

thereby completing the proof.
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